Large time behavior of differential equations with drifted periodic coefficients modeling carbon storage in soil
نویسندگان
چکیده
This paper is concerned with the linear ODE in the form y(t) = λρ(t)y(t) + b(t), λ < 0 which represents a simplified storage model of the carbon in the soil. In the first part, we show that, for a periodic function ρ(t), a linear drift in the coefficient b(t) involves a linear drift for the solution of this ODE. In the second part, we extend the previous results to a classical heat non-homogeneous equation. The connection with an analytic semi-group associated to the ODE equation is considered in the third part. Numerical examples are given.
منابع مشابه
Large time behavior of differential equations with drifted periodic coefficients and modeling Carbon storage in soil
This paper is concerned with the linear ODE in the form y(t) = λρ(t)y(t)+b(t), λ < 0 and which represents a simplified model of storage of the carbon in the soil. In the first part, we show that, for a periodic function ρ(t), a linear drift in the coefficient b(t) involves a linear drift for the solution of this ODE. In the second part, we give sufficient conditions on the coefficients to ensur...
متن کاملDrill string Vibration Modeling Including Coupling Effects
Abstract: The governing equations of motion for a drill string considering coupling between axial, lateral and torsional vibrations are obtained using a Lagrangian approach. The result leads to a set of non-linear equations with time varying coefficients. A fully coupled model for axial, lateral, and torsional vibrations of drill strings is presented. The bit/formation interactions are assumed ...
متن کاملRenormalization Group Analysis of Nonlinear Diffusion Equations with Periodic Coefficients
In this paper we present an efficient numerical approach based on the Renormalization Group method for the computation of self-similar dynamics. The latter arise, for instance, as the long-time asymptotic behavior of solutions to nonlinear parabolic partial differential equations. We illustrate the approach with the verification of a conjecture about the long-time behavior of solutions to a cer...
متن کاملEXISTENCE OF PERIODIC SOLUTIONS IN TOTALLY NONLINEAR NEUTRAL DIFFERANCE EQUATIONS WITH VARIABLE DELAY
متن کامل
Mathematical modeling of optimized SIRS epidemic model and some dynamical behavior of the solution
In this paper, a generalized mathematical model of spread of infectious disease as SIRS epidemic model is considered as a nonlinear system of differential equation. We prove that for positive initial conditions the resulting equivalence system has positive solution and under some hypothesis, this system with initial positive condition, has a positive $T$-periodic solution which is globally asym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 218 شماره
صفحات -
تاریخ انتشار 2012